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Abstract

Inheritable epigenetic mutations (epimutations) can contribute to transmittable phenotypic variation. Thus, epimutations can be

subject tonatural selectionand impact thefitnessandevolutionoforganisms.Basedontheframeworkof themodifiedTajima’sD test

for DNA mutations, we developed a neutrality test with the statistic “Dm” to detect selection forces on DNA methylation mutations

using single methylation polymorphisms. With computer simulation and empirical data analysis, we compared the Dm test with the

original and modified Tajima’s D tests and demonstrated that the Dm test is suitable for detecting selection on epimutations and

outperforms original/modified Tajima’s D tests. Due to the higher resetting rate of epimutations, the interpretation of Dm on

epimutations and Tajima’s D test on DNA mutations could be different in inferring natural selection. Analyses using simulated and

empirical genome-wide polymorphism data suggested that genes under genetic and epigenetic selections behaved differently. We

applied theDm test to recentlyoriginatedArabidopsisandhumangenes,andshowedthatnewlyevolvedgenescontainhigher levelof

rare epialleles, suggesting that epimutation may play a role in origination and evolution of genes and genomes. Overall, we dem-

onstrate theutilityof theDm test todetectwhether the loci areunder selection regardingDNAmethylation.Ouranalyticalmetricsand

methodology could contribute to our understanding of evolutionary processes of genes and genomes in the field of epigenetics. The

Perl script for the “Dm” test is available at http://fanlab.wayne.edu/ (last accessed December 18, 2014).
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Introduction

Epigenetic marks, such as DNA methylation, have been shown

to affect gene expression (Zhang et al. 2006; Zilberman et al.

2007; Laurent et al. 2010; Zemach et al. 2010; Li et al. 2012).

Similar to spontaneous nucleotide mutations in DNA se-

quences, spontaneous errors can also occur in epigenetic

modifications (epimutation) (Becker et al. 2011; Schmitz

et al. 2011; Schmitz, Schultz, et al. 2013). These epimutations

can be transgenerationally inherited and accumulate over an

evolutionary timescale, resulting in heritable phenotypic vari-

ations (Bender and Fink 1995; Cubas et al. 1999; Manning

et al. 2006; Heijmans et al. 2008; Martin et al. 2009;

Becker et al. 2011; Hitchins et al. 2011; Schmitz et al. 2011;

Calarco et al. 2012; Hirsch et al. 2012; Jiang et al. 2013;

Schmitz, Schultz, et al. 2013; Silveira et al. 2013; Cortijo

et al. 2014; Dias and Ressler 2014). Thus, epimutations can

contribute to the fitness of organisms, and the evolution of

epimutations could be driven by natural selection. For exam-

ple, organisms can adapt to variable environments/ecological

niches by way of epigenetic variations (Rapp and Wendel

2005; Geoghegan and Spencer 2012, 2013; Hirsch et al.

2012). Therefore, it would be imperative to detect the loci

whose epigenetic modifications are under natural selection,

in order to enhance our understanding of the evolutionary

dynamics of organisms from an epigenetic aspect.

DNA methylation mutation, which is defined as a methyl

group being added or removed from a cytosine base in DNA,

is one type of inheritable epimutations. As more and more

whole-genome base resolution methylome data of popula-

tions become available, the intraspecific single methylation

polymorphisms (SMPs) can be used to investigate the evolu-

tionary processes of DNA methylation (Becker et al. 2011;

Schmitz et al. 2011; Eichten et al. 2013; Heyn et al. 2013;

Schmitz, He, et al. 2013; Schmitz, Schultz, et al. 2013). Studies

have shown that SMPs have the following four properties: 1)

Although C-differentially methylated regions (C-DMRs) and

genetic variants may be linked, association between SMPs/

CG-DMRs and genetic variants was rarely observed

(Schmitz, Schultz, et al. 2013); 2) the epimutations rate (�m)

is comparatively high. The methylation mutation rate with the
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lower bound of 4.46�10�4/(cytosine of CG)/generation is

orders of magnitude greater than the DNA mutation rate,

which is around 1�10�8 to 10�9/base/generation

(Ossowski et al. 2010; Schmitz et al. 2011). Thus, the epimu-

tation parameter �m based on SMPs (�m ¼ 4N�m, N is the

effective population size, �m is the epimutation rate per gen-

eration) is theoretically greater than mutation parameter (�)

based on single nucleotide polymorphisms (SNPs) (� ¼ 4N�,�

is the mutation rate per generation). 3) The loci bearing SMPs

are finite. The percentage of methylated cytosines (mCs)

among all the cytosines in Arabidopsis is about 75%

(Seymour et al. 2014); and 4) the epimutation rate varies

among different cytosine sites. Only a small proportion of

mCs (approximately 10% over whole genome and approxi-

mately 40% in gene body of Arabidopsis) show epimutations.

Among them, a few sites experience rapid epimutations

(Becker et al. 2011; Schmitz et al. 2011). Previously, limited

studies investigated natural selection on DNA methylation.

Using chimpanzee as the outgroup to search for the CG-cy-

tosine sites bearing the methylation state with single human

population outliers, a recent report identified positively se-

lected CG-cytosine sites in human populations (Heyn et al.

2013).

Tajima’s D test (D) is a classic neutrality test to detect natural

selection in nucleotide sequences (Tajima 1989). Basically, D

compares the difference between two estimators of the mu-

tation parameter �ð� ¼ 4N�), and normalizes the difference

with its standard deviation. � can be estimated by the average

number of pairwise nucleotide differences (�) and by the

number of segregation sites (S) among a sample of DNA se-

quences. Under neutral scenarios, the two estimators, �� and

�s, should have similar values and their difference should be

around zero. However, natural selection or demographic ef-

fects (e.g., population expansion or shrinkage) can influence

the allele frequency and give rise to a biased allele frequency

spectrum. �� takes into account of the allele frequency spec-

trum, but �s does not. Therefore, natural selection or demo-

graphic effects influence the two estimators differently, which

can lead to nonzero difference. Later, based on D (Tajima

1989), Misawa and Tajima developed a modified Tajima’s D

test (Dmod) by deriving the equations of the �� and �s estima-

tors (Misawa and Tajima 1997) following three assumptions: 1)

Mutations occur in finite sites, 2) the neutral mutation rate

varies among sites, and 3) � can be large (Tajima 1989;

Misawa and Tajima 1997).

These assumptions mostly fit the aforementioned proper-

ties of DNA methylation mutations. However, Dmod is used for

the mutations in DNA sequences, where each site has four

possible nucleotide states (A, T, C, or G), whereas each cyto-

sine has only two methylation states (methylated or unmeth-

ylated). Taking into consideration the SMP characteristics

mentioned above and the SMP frequency spectrum, we de-

veloped a new test “Dm” for methylation mutations based on

the framework of D and Dmod. Basically, we derived the

equations of DNA methylation mutation parameter �m esti-

mated by the average methylation state difference per site ð

�mÞ and by proportion of methylation segregation sites ðsmÞ.

Then, we compared the difference of the two estimators and

normalized the difference by its standard deviation. The dif-

ference could show whether a locus has an excess of low-

frequency or intermediate-frequency SMPs, suggesting the

signature of selection and/or demographic changes in DNA

methylation. We applied Dm to SMPs simulated with an epi-

genetic inheritance model and under population epigenetic

selection models. We compared Dm with D and Dmod. The

simulation results showed that Dm was capable of detecting

selection on SMPs, although it could also be sensitive to de-

mographic effects. We then applied Dm to empirical SMP data

from Arabidopsis and human, and further analyzed whether

there is any association between natural selection on SMPs

and SNPs. Finally, we used Dm to detect natural selection on

DNA methylation of newly evolved genes in Arabidopsis and

human genomes. Overall, the results based on both simulated

and empirical SMP data suggest the utility of Dm as a neutrality

test for DNA methylation mutations.

Materials and Methods

Construction of the Neutrality Test

We assume, in a finite-site and Cavender–Farris–Neyman

(CFN) model (Neyman 1971; Farris 1973; Cavender 1978)

with equal methylation state frequencies and equal epimuta-

tion (gain or loss of methylation) rates, “n” DNA sequences

are randomly sampled from the population. Thus, following

the approach of Tajima’s (1996) work, we obtain the proba-

bility (piÞ of a particular cytosine site exclusively methylated or

exclusively unmethylated in the sample as below:

pi ¼
� 2�mð Þ� �m þ nð Þ

� �mð Þ� 2�m þ nð Þ
: ð1Þ

We assume that the epimutation rate parameter, �m (4N�mÞ

per cytosine site per generation, follows a gamma distribution

(Kimura 1968; Ewens 1972; Schmitz et al. 2011; Berke et al.

2012):

g �mð Þ ¼
��

�ð�Þ
e���m�m

��1: ð2Þ

We denote �m as the average number of pairwise methylation

state differences per cytosine site, and sm as the proportion of

segregating cytosine sites (the number of segregating sites per

cytosine site). Following Tajima (Tajima 1996; Misawa and

Tajima 1997), we obtained:

E smð Þ&a1 � E �mð Þ �
1

1þ c1
�þ1ð Þ

� E �mð Þ
; ð3Þ
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E �mð Þ&
E �mð Þ

1þ 2 �þ1ð ÞE �mð Þ

�

; ð4Þ

a1 ¼
Xn�1

i¼1

1

i
;

a2 ¼
Xn�1

i¼1

1

i2
;

a3 ¼
a1ð Þ

2
� a2

2
;

c1 ¼ 2a1 �
3a3

a1
:

Notably, the equation of c1 and equation (4) above are

different from those of c1 and equation (22) in Tajima (1996).

After transformation and approximation:

c��m
¼ �mexp

2ð�þ 1Þ�m

�

� �
; ð5Þ

c�sm
¼

sm

a1
exp

c1ð�þ 1Þsm

a1�

� �
: ð6Þ

In Tajima’s D test (Tajima 1989),

D ¼
� �

S

a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1S þ e2SðS � 1Þ

p ;

b1 ¼
nþ 1

3 n� 1ð Þ
;

b2 ¼
2ðn2 þ nþ 3Þ

9nðn� 1Þ
;

c3 ¼ b1 �
1

a1
;

c4 ¼ b2 �
nþ 2

a1n
þ

a2

a2
1

;

e1 ¼
c3

a1
;

e2 ¼
c4

a2
1 þ a2

:

� is the average number of nucleotide differences over the

whole sequence, and S is the number of segregating sites over

the whole sequence.

Substituting c��m
� L ¼ � and c�sm

� L ¼ sm

a1
(L is the length

of cytosines in the sequence) into above Tajima’s D test, we

developed the neutrality test statistic for methylation muta-

tions as

Dm ¼
c��m
�c�smffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1e1
b�sm

L þ e2a1
c�sm
ða1
c�sm
� 1=LÞ

r : ð7Þ

Under neutral hypothesis, E Dmð Þ&0 and V Dmð Þ&1, which

were shown by the simulation results in the later section. The

detailed derivation steps of these mathematical equations are

described in supplementary material S1, Supplementary

Material online.

Computer Simulation

The Inheritance Model of DNA Methylation

Both theoretical and empirical studies showed that DNA

methylation could be inherited in a way similar to genetic

mutation (Richards 2008; Jablonka and Raz 2009; Slatkin

2009; Becker et al. 2011; Schmitz et al. 2011; Cortijo et al.

2014). At a specific cytosine site, we denote “1” as methyl-

ated and “0” as unmethylated. We denote the loss rate as

“g” and the gain rate as “d.” Hence, the inheritance of epi-

genetic mark can be modeled using a two-state Markov chain.

The transition rate matrix, Q, describing the instantaneous rate

of change between 0 and 1, is

0 1

Q ¼ qij

� �
¼

0

1

�d d

g �g

2
64

3
75:

The diagonals are specified by the requirement that each

row of Q sums to zero. Q determines the transition probability

matrix, P, over any time t>0: P tð Þ ¼ pij tð Þ
� �

where pij tð Þ is

the probability that when t = 0, the site is the i state, and after

t> 0, the site is the j state.

dPðtÞ

dt
¼ P tð ÞQ:

Thus, P tð Þ ¼ eQt , with the boundary condition P 0ð Þ ¼ I,

the identity matrix (when t = 0, no transition occurs).

Therefore, the model of epigenetic inheritance is analogous

to the one of DNA substitution in the finite sites. Here, we

considered the simplest model when g ¼ d ¼ � per genera-

tion and the initial distribution �ð0Þ ¼ ð� 0ð Þ
0 ; �

0ð Þ
1 Þ ¼ 0:5; 0:5ð Þ,

thus

Q ¼ qij

� �
¼

�� �

� ��

2
4

3
5 and

Pij tð Þ ¼

1

2
þ

1

2
e�2�t if i ¼ j

1

2
�

1

2
e�2�t if i 6¼ j

:

8>>><
>>>:

Slatkin also proposed a model of epigenetic inheritance

(Slatkin 2009). In contrast to the above one-parameter

model assuming equal methylation gain and loss rate,

Slatkin’s model uses two parameters to describe the rates of

gain and loss, respectively. Simulations with both models

Wang and Fan GBE
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generated similar results, supporting the utility of Dm (see sup-

plementary material S2 for details of Slatkin’s model, supple-

mentary figs. S1 and S2 and table S1, Supplementary Material

online). However, the advantage of one-parameter model is

the simplicity, which uses one parameter to describe epimuta-

tion rate. When the knowledge about the methylation gain

rate and loss rate remains largely unknown, it is more practical

and easier to implement one-parameter model. Therefore, we

only present the results based on the above one-parameter

model below.

Neutral Scenarios

We used “ms” package (Hudson 2002) to generate 10,000

random genealogy trees of 60 samples with coalescent algo-

rithm assuming no recombination and no demographic ef-

fects. The branch length of the tree is the evolutionary time,

T, between the ancestor and its child nodes, where T was

measured in the unit of 4N generation (T ¼ t=4N). Then,

we modified the “seq-gen” package (Rambaut and Grassly

1997) to generate 1,000-bp sequences of methylation states

evolving along these genealogy trees, according to the above

inheritance model and epimutation (gain or loss of methyla-

tion) rates of different sites following a gamma distribution.

We choose different parameter values in the modified “seq-

gen” to allow the mean of �m and � to take on different

values (see supplementary material S2, Supplementary

Material online, for more details).

Test Powers for Selection and Demographic Effect

Under different demographic scenarios and the population

epigenetic selection models, we simulated SMPs with the

mean of �m ¼ 0:1 per site per generation, which is gamma

distributed among the sites with � ¼ 0:5. All tests were one-

sided. The test power was computed as the proportion of test

statistic values falling into the lower or upper 5% tail of the

null distribution (a neutral model without recombination, se-

lection, and demographic effects). The parameters and com-

mands for running “ms” and “ms_sel” package are listed in

supplementary material S1, Supplementary Material online.

Demographic Effects

For population size changes, we used “ms” package to gen-

erate random genealogy trees assuming instantaneously

100�population expansion or 1/100 population shrinkage

occurring at different time points (measured from the present

backwards in units of 4N generations) with no recombination.

For population subdivision, we used “ms” to generate

random genealogy trees assuming island model with symmet-

ric migration rate between two subpopulations with

4Nm = 0.1, because the Dm test is only sensitive to strong

subdivision, for example, 4Nm<0.5 (Zeng et al. 2006). And

we took different sampling schemes from the two

subpopulations to test the sensitivity of the neutrality tests.

Based on the generated genealogy trees of different demo-

graphic models, we used the modified “seq-gen” to generate

the sequences of methylation states according to the above

inheritance model.

Selection Models

We adopted the population epigenetic models of selection

developed by Geoghegan and Spencer (2012) (“Model 1”

and “Model 2”). According to Geoghegan and Spencer’s

Model 1, which assumes a single autosomal locus A with

two epialleles, A1 and A2 that could be epigenetically modified

by two different environments (j = 1,2). They assigned the cor-

responding epiallele frequencies as p1 and p2, respectively,

where
P

pk ¼ 1. The frequencies of epialleles A1 and A2

after selection, ps
1 and ps

2, can be calculated using

Geoghegan and Spencer’s equations (1) and (2).

Subsequently, the frequencies in the next generation can be

computed using recursion equations as Geoghegan and

Spencer’s equations (3) and (4). The mean fitness of popula-

tion, w ; is the sum of ps
1 and ps

2 (Geoghegan and Spencer

2012) (see supplementary material S2, Supplementary

Material online, for more details).

According to Geoghegan and Spencer’s Model 2, which

assumes a single autosomal locus with two alleles and epial-

leles inherited from parents residing in two different environ-

ments (j = 1,2). Aj and aj assign for epialleles “A” and “a”,

respectively. The epiallele frequencies of A1, A2, a1 and a2 are

p1, p2, p3 and p4, respectively, where
P

pk ¼ 1. Similar to

“Model 1,” the frequencies of epialleles A1, A2, a1 and a2

after selection, ps
1, ps

2, ps
3 and ps

4, can be calculated using

Geoghegan and Spencer’s equations (7)–(10). Subsequently,

the frequencies in the next generation can be computed using

recursion equations as Geoghegan and Spencer’s equations

(11)–(14). The mean fitness of population,

w ¼ ps
1 þ ps

2 þ ps
3 þ ps

4 (Geoghegan and Spencer 2012)

(see supplementary material S2, Supplementary Material

online, for more details).

The equilibrium solutions of Geoghegan and Spencer’s

metrics are algebraically complicated. Thus, Geoghegan and

Spencer (2012) explored the parameter space numerically.

Based on their results, we picked several parameter settings,

which show directional selection and heterozygote disadvan-

tage in two environments, and permitted a stable equilibrium

(as shown in figs. 6 and 11 of Geoghegan and Spencer’s

article). Based on these parameter settings, we generated

the frequency trajectories of epialleles/alleles. Based on the

frequency trajectories, we generated the genealogy trees of

60 samples of the two epialleles/alleles using ms_sel package

with coalescent algorithm, kindly provided by R. Hudson

(University of Chicago).

The “ms_sel” program package simulates selective

sweeps, and it has been applied in various studies (Coop

Neutrality Test for DNA Methylation GBE
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and Ralph 2012; Leffler et al. 2013; Pavlidis et al. 2013). We

first generated frequency trajectories of the selected alleles.

Based on these frequency trajectories, ms-sel coalescently de-

termined the genealogy tree of selection favored site and its

linked sites. The rationale behind is that the distribution of

ancestral frequencies of selected alleles (namely, the fre-

quency trajectories here) can reveal the genealogy describing

the states (a coalescence or mutation event) in the coales-

cence processes and the interval time between different

states (Kaplan et al. 1988). The effect of recombination

could also be included into the simulation of genealogy tree

(Hudson and Kaplan 1988).

We assigned that the epigenetic sequence (that is defined

as the sequence of DNA methylation states) length (L) is 1,000

bp whereas the number of breakpoints is 999 and recombi-

nation happens between adjacent base pairs. The population

recombination rate (4N*r) is 8�10�4 that is consistent with

that of Arabidopsis (Kim et al. 2007). Thus, recombination

probability parameter is 4N*r*(L�1) = 0.7992; and the

500th site evolves under selection. Then, using the modified

“seq-gen”, we simulated the sequences of methylation states

evolving along the above genealogy trees under “Model 1”

and “Model 2.” Similarly, we assigned that the DNA sequence

length is 4,000 bp (4*1,000 bp). The recombination probabil-

ity parameter is 4N*r*(L� 1) = 3.1992, and the 2,000th site

evolves under selection. Then, using the original “seq-gen,”

we simulated the DNA sequences evolving along the geneal-

ogy trees under “Model 2” (see supplementary material S2,

Supplementary Material online, for more details).

Estimation � Value of Gamma Distribution

The � is the shape parameter of a gamma distribution by

which we describe the distribution of mutation rate among

cytosines in the Dm test. In a parsimony analysis, the distribu-

tion of the (minimum) numbers of changes per site will ap-

proximately follow a Poisson distribution if the change rate is

constant, but will approximately follow a negative binomial

distribution if the change rate is gamma distributed (Tamura

and Nei 1993; Yang and Kumar 1996). To infer the (minimum)

number of changes per site, it is necessary to have the phylo-

genetic tree for all the sequences first. This can be inferred

using the neighbor-joining method (Tamura and Nei 1993).

Further, the changes in the tree topology may have little effect

when estimating the relative frequencies of nucleotide substi-

tution (Tamura and Nei 1993).

Based on the empirical SMP data, we constructed a phylo-

genetic tree of all the samples using the neighbor-joining al-

gorithm for each locus of interest. Then according to the

constructed neighbor-joining tree and parsimony method,

we counted the number of sites (Nk) at which k changes are

inferred along the tree when k� 5, and assumed the rest of

sites with k = 6 (for simplicity). As mentioned above, if the

change rate is gamma distributed with shape parameter �,

the distribution of k will follow a negative binominal distribu-

tion. Thus, the sample mean (m) and variance (s2) of k can be

equated to the mean and variance of the negative binomial

distribution, respectively, and parameter � can be esti-

mated by

� ¼ m2=ðs2 �mÞ

(Tamura and Nei 1993). When the s2 is 0 (namely, no

variance), we assumed � is 1,000,000. And when s2 < m,

we assumed � ¼ m2=ðs2 � exp � m
s2

� �
Þ (substituting 1� m

s2 ¼

expð� m
s2Þ in the above equation). Thus, we estimated � for

each locus of interest. We further analyzed the effect of over-

estimation or underestimation of � on the test.

Collection of SMP and SNP Data of Arabidopsis

We downloaded the processed Methyl-C sequencing data of

mixed stage inflorescence samples of 50 Arabidopsis acces-

sions from National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) under accession

number GSE43857: http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE43857 (Schmitz, Schultz, et al. 2013). We

then collected the SMPs on the cytosines mapped in all the

50 Arabidopsis accessions. We further extracted CG-SMPs

from C-SMPs, because gene body usually has a higher abun-

dance of mCG (Becker et al. 2011; Li et al. 2012; Schmitz,

Schultz, et al. 2013). We downloaded the processed and qual-

ity filtered SNP data of the same Arabidopsis accessions as the

SMP data from http://signal.salk.edu/atg1001/download.php.

The gene annotation “.gff” file of Arabidopsis was obtained

from Phytozome v8.0 (http://www.phytozome.net/) with

Arabidopsis thaliana 167 (TAIR release 10 acquired from

TAIR at http://www.arabidopsis.org/download/index.jsp).

Collection of Human SMP and SNP Data

We downloaded the processed HumanMethylation450

BeadChip data of the lymphoblastoid cells from NCBI GEO

under accession number GSE36369: http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE36369. This data set in-

cludes 96 individuals from African-American population, 96

individuals from Asian-American population, and 96 individ-

uals from Caucasian Americans (Heyn et al. 2013). Notably,

we removed 11 Caucasian and 8 African individuals who were

identified as outliers by Heyn et al. (2013). We only considered

the probes in the gene body region. To simulate the diploid

format of the human genome, we approximated the methyl-

ation states of each mapped CG-cytosine site according to its

� value, which is equal to methylation signal/(methylation sig-

nal + unmethylation signal + 100) (Heyn et al. 2013). Sites with

�<0.33 were annotated as unmethylated and unmethylated;

those with �>0.66 were represented as methylated and

methylated; and those in the between were annotated as

unmethylated and methylated (Heyn et al. 2013). We then

collected the SMPs on the CG-cytosines mapped in each of
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the three human populations. The corresponding relationship

between genes and chip probes was based on the Illumina

description file, GPL13534_HumanMethylation450_

15017482_v1.1.csv, downloaded from http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534. The reference

gene annotation was based on “refGene.txt” downloaded

from UCSC genome browser http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/database/. We also downloaded the

processed SNP data of the same three human populations

(African-American, Asian-American, and Caucasian-

American population) from NCBI GEO under accession

number GSE24245 (Niu et al. 2010). These data included

the SNP mapped in 96 individuals of each of the three

human populations with Illumina HumanExon510-Sv1 DNA

BeadChip.

The Randomly Selected Gene Sets

A species with complicated demography often has a skewed

frequency spectrum. This causes these population genetics

test statistics to be far more negative/positive than are ex-

pected under a standard neutral model. It, thus, leads to

false positive in search for footprints of adaptive events if a

standard neutral model is used as the null hypothesis. To over-

come this, we performed alternative population genetics anal-

ysis using empirical distribution from a large amount of

unlinked genes in the genome, which has been tested previ-

ously (Schmid et al. 2005; Toomajian et al. 2006; Ramos-

Onsins et al. 2008; Wang et al. 2013). We randomly picked

2,425 genes across the entire Arabidopsis genome, each of

which has at least one SMP among the 50 accessions, as D,

Dmod, and Dm could not be computed if no SMP is present.

Two randomly selected genes (RGs) are at least 25 kb apart

from each other as linkage disequilibrium in A. thaliana decays

on average within 25–50 kb (Nordborg et al. 2005; Ramos-

Onsins et al. 2008; Schmitz, Schultz, et al. 2013). We ran-

domly chose 6,178–6,271 genes across the human genome

except sex chromosomes due to that sex chromosome has

different effective population size from the autosomes, each

of which has at least one SMP among all the individuals

of each of three subpopulations. Two RGs are at least

100 kb apart from each other to avoid the possible linkage

disequilibrium in human genome (Bosch et al. 2009). Based

on these RG selected criteria, approximately 2,000 and

approximately 6,000 are the maximum numbers of RGs that

we can generate in Arabidopsis and human genomes,

respectively.

Results

Validation of the Dm Test through Simulated SMP Data
under Neutral Mode

We developed the equations of two estimators, c��m
and c�sm

,

to estimate �m. We then constructed Dm based on the

difference between the two estimators (see eqs. 5 and 6).

To validate Dm and further compare it with D and Dmod,

we simulated SMP data assuming that equal frequency of

methylation and unmethylation, and the rates of spontaneous

methylation gain and loss are equal as �m (epimutation rate),

and the epimutation rates among sites follow a gamma dis-

tribution with the shape parameter alpha � (Schmitz et al.

2011; Berke et al. 2012). We applied and calculated Dm, D,

and Dmod to the simulated SMP data by considering different

�m and � values in neutral mode without selection, recombi-

nation, and demographic effects (see Materials and Methods

for the details).

The means of c��m
and c�sm

from Dm are closer to the as-

sumed �m values than those of the estimators from D and

Dmod for all the considered parameter values. The biases of

the estimates from D and Dmod are more evident when the

assumed �m value increases and � value decreases (supple-

mentary table S2, Supplementary Material online, and fig. 1).

Moreover, compared with Dmod and D, the mean of Dm is

closer to zero, suggesting that the Dm test is the best metrics

as a neutrality test for epimutations (supplementary table S3,

Supplementary Material online, and fig. 2). Cautiously, we

observed that c�sm
also underestimates �m and c��m

overesti-

mates �m when the assumed �m value increases and � value

decreases (supplementary table S2, Supplementary Material

online, and fig. 1). Two factors could cause these deviations.

First, the epimutation rate is gamma distributed. When we

assumed larger �m and smaller � value to simulate the

SMPs, a few sites, which experienced multiple epimutation

turnarounds (gain and loss of methylation), ended up as

fewer methylation changes. This leads to that the number

of segregation sites decrease and c�sm
underestimate �m.

Second, there are only two methylation states. When epimu-

tation rate (the assumed �m) is high, the proportion of inter-

mediate-frequency SMPs will increase, leading to that c��m
will

overestimate �m.

We further simulated the situations with unequal initial

frequencies of methylation and unmethylation for two

cases: 1) The case with equal methylation gain and loss rate

and 2) the case where methylation gain and loss rate depend-

ing on the epimutation rate and equilibrium frequencies of

methylation and unmethylation frequencies. For these situa-

tions, Dm still performed better than Dmod and D (see supple-

mentary material S2 for more details, supplementary figs. S3

and S4, Supplementary Material online).

Test Sensitivity for Demographic Effects

Population Growth

Population growth can cause an excess of low-frequency

SMPs, leading to the test statistics of Dm, Dmod, and D shifting

to the negative values of the null distribution. As shown in

figure 3A, all three tests are sensitive to the population growth

(the population size instantaneously increases 100 times) soon
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after it occurs, and remain sensitive until 0.4*4N generations,

and their sensitivities are similar.

Population Shrinkage

When population size decreases, the proportions of interme-

diate-frequency SMPs will increase and the proportions of

low-frequency SMPs will decrease, leading to the test statistics

of Dm, Dmod, and D shifting to the positive values of the null

distribution. With the population size instantaneously decreas-

ing 100 times, the sensitivities of all three tests are at the

similar levels, which stay around 1 before 0.1*4N generation,

decrease afterwards, and disappear after 1.5*4N generations

(fig. 3B).

Population Subdivision

The effect of population subdivision with low migration level

(e.g., 4N*m< 0.5, m as the migration rate) is similar to the

effect of high mutation rate. When the sampling scheme is

biased, there are a large proportion of low-frequency SMPs.

As the sampling scheme becomes more even, the proportion

of intermediate-frequency SMPs will increase. Therefore,

under population subdivision scenarios, the test statistics of

Dm, Dmod, and D shift from the negative values of the null

distribution to the positive values as the sampling scheme be-

comes more even. All three tests are sensitive to population

subdivision at similar levels in either negative or positive direc-

tion (fig. 3C and D).

Test Power for Detecting Selection

The theoretical studies by Geoghegan and Spencer revealed

that in population epigenetic selection models, the fixation of

epialleles is not at stable equilibrium as epigenetic variations

could be constantly regenerated (Geoghegan and Spencer

2012, 2013). Specifically, under directional selection in epial-

leles, when the epigenetic resetting rate (which is the fre-

quency of resetting to the epiallele type induced by the

residing environment, see supplementary material S2,

Supplementary Material online) is low (<0.5), an excess of

low-frequency polymorphisms can be observed. This is analo-

gous to a genetic directional selection scenario when the

FIG. 1.—Comparison of the �m estimators from the Dm, Dmod, and D tests based on the simulated SMP data. (A) The x axis is the simulated �m value with

� fixed at 0.2; and the y axis is the estimated �m value from the c�sm
estimators of the three tests. (B) The x axis is the same as (A); and the y axis is the

estimated �m value from the d��m
estimators of the three tests. (C) The x axis is the simulated � value with �m fixed at 0.1, and the y axis is the same as (A). (D)

The x axis is the same as (C), and the y axis is the same as (B).
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fixation is approaching but not complete yet. Although, when

epigenetic resetting rate is high (�0.5) and the frequencies of

epialleles residing in different environments are equal, a higher

proportion of common polymorphisms can be maintained

even under epigenetic heterozygote disadvantage

(Geoghegan and Spencer 2012, 2013). This is analogous to

the genetic balancing selection scenario. To validate the

powers of the three tests in detecting selection of epimuta-

tions, we simulated SMPs under the two population epige-

netic selection models proposed by Geoghegan and Spencer:

“Model 1” assumes a monoallele and biepiallele locus; and

“Model 2” assumes a biallele and biepiallele locus

(Geoghegan and Spencer 2012).

Based on “Model 1,” we simulated the three types (Type 1,

Type 2, and Type 3) of epiallelic frequency trajectories in the

two situations where the epiallele frequencies are approach-

ing and have been maintained at equilibrium for certain

evolutionary time, respectively (see Materials and Methods,

and supplementary fig. S5, Supplementary Material online).

“Type 1” trajectories consider that the frequency of one epial-

lele decreases from 1 to 0.05–0.1 and that of the other in-

creases from 0 to 0.9–0.95. “Type 2” trajectories consider

that the frequency of one epiallele decreases from 1 to

0.9–0.95 and that of the other increases from 0 to 0.05–

0.1. “Type 3” trajectories consider that the frequency of

one epiallele decreases from 1 to 0.4–0.5 and that of the

other increases from 0 to 0.5–0.6. At the moment when

the equilibrium just arrives, all three tests (Dm, Dmod, and D)

can detect the selection in Type 1 and Type 3 scenarios in the

negative direction with similar powers (table 1). When the

equilibrium has been maintained for certain evolutionary

time, for the Type 1 scenario, the test powers are in the

negative direction and decrease as time lasts. All three tests

performed at the same power level (fig. 4).

For the Type 2 scenario, when the equilibrium frequency of

one epiallele is around 0.05, the selection becomes detectable

in the negative direction and Dm performed much better than

Dmod and D (fig. 4). As shown in equations (5), (6), c1 and

figure 1, D and Dmod tests underestimate c��m
and c�sm

, which is

severer in D test, and have a stronger effect on c�sm
than c��m

,

which is severer in Dmod (supplementary table S4,

Supplementary Material online). When a large excess of rare

epialleles exist in the Type 2 scenario (one epiallele was main-

tained in the frequency of 0.05–0.1), c��m
is smaller than c�sm

,

leading the test statistic Dm, Dmod, and D toward negative

direction. However, compared with Dm test, the severe

FIG. 2.—Comparison of the test statistics of the Dm, Dmod, and D tests based on the simulated SMP data. (A) The x axis is the simulated � value with �m

fixed at 0.1, and the y axis is the Dm, Dmod or D value. (B) The x axis is the simulated �m value with � fixed at 0.2, and the y axis is the same as (A).
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underestimation of c�sm
and c��m

in D leads the test statistic

closer to the neutral null distribution, whereas much stronger

underestimation on c�sm
than c��m

in Dmod leads the test statistic

to be less negative (supplementary table S4, Supplementary

Material online). Therefore, the final distributions of Dmod and

D in Type 2 scenario are closer to the neutral null distributions

than that of Dm, leading to Dmod and D tests having lower

power than Dm test. In contrast, in Type 1 scenario, there is a

FIG. 3.—Comparison of the sensitivity of the Dm, Dmod, and D tests to different demographic effects based on the simulated SMP data. (A) For

population expansion, x axis is the time period after the instantaneous population growth, measured in the unit of 4N generations. (B) For population

shrinkage, x is the time period after the instantaneous population shrinkage, measured in the unit of 4N generations. (C, D) For population subdivision model,

x axis is the sampling scheme of 60 samples. The y axis is the test power of the three tests. aThe test power was computed as the proportion of test statistic

values falling into the lower 5% tail of the null distribution. bThe test power was computed as the proportion of test statistic values falling into the upper 5%

tail of the null distribution.

Table 1

Test Powers in the Three Scenarios under the Population Epigenetic Selection “Model 1”

r t Initial Equilibrium Scenario Type Test Power

p1 p2 p1 p2 Dm Dmod D

0.5 0.1 0 1 0.1093 0.8907 2 0.0467 0.0467 0.0474

0.5 0.1 1 0 0.1093 0.8907 1 0.9948 0.9971 0.9974

0.5 0.5 0 1 0.413 0.587 3 0.124 0.1317 0.1322

0.5 0.5 1 0 0.413 0.587 3 0.3213 0.3421 0.3464

0.5 0.9 0 1 0.5103 0.4897 3 0.2049 0.2166 0.2187

0.5 0.9 1 0 0.5103 0.4897 3 0.1921 0.2045 0.2055

0.1 0.5 0 1 0.0552 0.9448 2 0.0457 0.0457 0.0455

0.1 0.5 1 0 0.0552 0.9448 1 0.9999 1 1

0.9 0.5 0 1 0.9378 0.0622 1 1 1 1

0.9 0.5 1 0 0.9378 0.0622 2 0.043 0.0432 0.0435

NOTE.—r, the frequency of environment where epialleles reside; t, the probability of epigenetic resetting to the epigenetic state in the residing environment.
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much larger excess of very rare epialleles (data not

shown), c��m
is much smaller than c�sm

, leading the test

statistic Dm, Dmod, and D toward negative direction in

far enough distance (supplementary table S4,

Supplementary Material online). Thus, the underestimation

of c�sm
and c��m

by D and Dmod have relatively weak impact

on the difference between Dmod/D distributions in Type 1

scenario and neutral scenario. So Dmod and D tests have

similar test power level in Type 1 scenario compared with

Dm test.

For the Type 3 scenario, the test powers to detect selection

are in the positive direction and at the same level (fig. 4).

Because a much larger excess of intermediate epialleles

(data not shown) exist in Type 3 scenario, c��m
is much

larger then c�sm
, leading the test statistic Dm, Dmod, and D

toward positive direction in far enough distance (supplemen-

tary table S4, Supplementary Material online). Therefore,

severe underestimation on c�sm
and c��m

in D and stronger un-

derestimation on c�sm
than c��m

in Dmod have relatively weak

impact on the difference between Dmod/D distributions in

Type 3 scenario and neutral scenario.

Based on “Model 2,” we generated two types (Type I and

Type II) of allele and epiallele frequency trajectories in the two

situations where the epiallele frequencies are approaching

and have been maintained at equilibrium for certain evolu-

tionary time, respectively (see Materials and Methods, and

supplementary fig. S2, Supplementary Material online). Both

Type I and Type II consider the existence of two alleles and one

epiallele initially but have different frequency trajectories for

the new deriving epiallele. For Type I, the frequency of the

new deriving epiallele rises from 0 to 0.9972 when the fre-

quency of one of alleles increases from 0.8 to 1. For Type II, the

frequency of the new deriving epiallele rises from 0 to 0.2436

when the frequency of one of alleles increases from 0.8 to 1.

When the equilibrium is approaching, D can detect selection

for alleles in both Type I and Type II scenarios in the negative

direction, whereas Dm, Dmod, and D can detect selection on

epialleles in the negative direction only for Type I scenario with

similar levels of power (table 2). After equilibrium arrives, for

Type I scenario, D is powerful for detecting selection in the

negative direction on alleles only during a short time window

(e.g., 0.001~0.4*4N generation after fixation), whereas Dm,

FIG. 4.—Comparison of the Dm, Dmod, and D tests in detecting selection based on the SMP data simulated under the population epigenetic selection

“Model 1.” The x axis is the time period after epialleles arrive at the stable equilibrium, measured in the unit of 4N generations. The y axis is the test power.
aThe test power was computed as the proportion of test statistic values falling into the lower 5% tail of the null distribution. bThe test power was computed

as the proportion of test statistic values falling into the upper 5% tail of the null distribution. See the main text for the description of the three types of

scenarios.
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Dmod, and D are powerful for detecting selection on epialleles

in the negative direction for most of time. Furthermore, Dm

outperformed Dmod and D after 0.4*4N generations (fig. 5).

The polymorphism spectrum after 4N generation in the Type I

scenario will be similar to that in the Type 2 scenario of

“Model 1”, namely, a large excess of rare epialleles are

observed (data not shown). Therefore, the better performance

of Dm than Dmod and D tests in that stage can be explained by

the aforementioned reason for Type 2 scenario of “Model 1”

(supplementary table S4, Supplementary Material online).

For Type II scenario, similar to the case in Type I, D is pow-

erful for detecting selection on genetic variants in the negative

FIG. 5.—Comparison of the Dm, Dmod, and D tests in detecting selection based on the SMP data and D based on SNP data, which are simulated under

the population epigenetic selection “Model 2.” The x axis is the time period after epialleles arrive at the stable equilibrium, measured in the unit of 4N

generations. The y axis is the test power. aThe test power was computed as the proportion of test statistic values falling into the lower 5% tail of the null

distribution. bThe test power was computed as the proportion of test statistic values falling into the upper 5% tail of the null distribution. See the main text for

the description of the two types of scenarios.

Table 2

Test Powers in the Two Scenarios under the Population Epigenetic Selection “Model 2”

r t Initial Equilibrium Scenario Type Test Power

PA Pa PA Pa Dm Dmod D

P1 P2 P1 P2

0.1 0.2 0.2 0.8 0 1 I 0.511

1 0 0.0028 0.9972 0.9804 0.9835 0.9835

0.33 0.2 0.2 0.8 0 1 II 0.518

1 0 0.7564 0.2436 0.0691 0.0711 0.0708

NOTE.—r, the frequency of environment where epialleles reside; t, the probability of epigenetic resetting to the epigenetic state in the residing environment.
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direction during a short evolutionary period, whereas Dm,

Dmod, and D become powerful for detecting selection on

epialleles in positive direction later (e.g., 2*4N generation

after equilibrium arrives). The performance rank of the three

tests is Dmod>Dm>D (fig. 5). Because Type II scenario gen-

erates an excess of intermediate frequency epialleles, b�� is

larger then �s
b, leading the test statistic Dm, Dmod, and D to-

ward positive direction. Compared with Dm test, the intense

underestimation of c�sm
and c��m

by D leads the test statistic

closer to the neutral null distribution, whereas much stronger

underestimation of c�sm
than c��m

by Dmod leads the test statistic

farther toward positive direction (supplementary table S4,

Supplementary Material online). Therefore, the final distribu-

tion of D in Type II scenario is closer to the neutral null distri-

bution than that of Dm, and D test has lower test power than

Dm test. And the final distribution of Dmod stays farther pos-

itive from the neutral null distribution than that of Dm, thus

Dmod displays higher test power than Dm.

The Effect of � to the Dm Test

The empirical survey of SMPs among the Arabidopsis lines,

which shared a common ancestor 30 generations ago, sug-

gested that methylation mutation rate varies among the cy-

tosine sites. The majority of cytosines did not have SMPs and

fewer SMPs had a higher frequency of occurrence (Schmitz

et al. 2011; Berke et al. 2012). Therefore, similar to Dmod, we

assumed that the epimutation rate among the cytosine sites of

a locus is gamma distributed with the shape parameter �. We

applied “the method of moments” to estimate � for each of

the loci when analyzing empirical data (see Materials and

Methods) (Tamura and Nei 1993). This method, however,

may not accurately estimate �. For example, depending on

the phylogenetic tree of the sampled sequences, � could be

overestimated when � is small (Yang and Kumar 1996;

Misawa and Tajima 1997). Therefore, we evaluated the

effect of overestimation and underestimation of � on Dm

with simulations.

First, we simulated SMPs with �= 0.1, 0.2, 1, and 10 under

neutral scenario, we then analyzed the distribution of Dm,

Dmod, and D computed with �= 0.5 based on the SMPs (sup-

plementary table S5, Supplementary Material online). When �

is overestimated, the distribution of Dm moves toward the

positive direction with a smaller variance. When � is under-

estimated, the distribution of Dm moves toward the negative

direction with a larger variance. This is due to an overestima-

tion of � leading to underestimation of c��m
and c�sm

, whereas

underestimation of � can overestimate c��m
and c�sm

. The bias

effects are stronger on c�sm
than c��m

(referred to eqs. 5, 6, and

c1 parameter). Regardless, we still found that the means of Dm

are more close to zero compared with Dmod and D in most

cases.

Second, we simulated SMPs with � ¼ 0:5 under selection

model, we then computed the power of Dm with � ¼ 0.05 or

10 based on the SMPs. For the aforementioned three

types of selection scenarios in “Model 1,” overestimation

of � did not impact the power much, but underestimation

of � weakened the power (supplementary table S6,

Supplementary Material online). Therefore, if � cannot be pre-

cisely estimated, it is better to be overestimated than to be

underestimated.

Application Dm to Empirical SMP Data

We applied the Dm test to C-SMPs and CG-SMPs of approx-

imately 2,400 RGs in the Arabidopsis genome, and to CG-

SMPs of approximately 6,200 RGs in the human genome

(see Materials and Methods). The distributions of Dm, Dmod,

and D for all RGs were shown in figures 6 and 7. The Dm

values are more negative than those of Dmod and D

(Wilcoxon rank sum test, P<10�12). As mentioned above,

D considers mutations occurring in an infinite site model

and Dmod considers four nucleotide types in a finite site

model. Thus, both D and Dmod tests would underestimate �

for epimutations (c��m
and c�sm

) that occur between two

methylation states and in finite sites (fig. 1). Moreover, the

underestimation will have a stronger effect on c�sm
than c��m

when �m and the sample size are larger, and the � value is

smaller (fig.1, and referred to eqs. 5, 6, and c1 parameter),

pushing the distribution of Dmod and D toward the positive

direction. In addition, we found that the Dm of African-

American population is significantly different from Asian-

American and Caucasian-American populations (Wilcox rank

sum test, P value< 0.05), but no significant difference

between Asian-American population and Caucasian-

American population was observed, suggesting that the

SMP frequency spectrum may differ among different human

populations.

Additionally, the distributions of Dm, Dmod, and D do not

resemble a standard neutral model in Arabidopsis. This obser-

vation may not be due to a majority of genes being under

positive or balancing selection on DNA methylation, but rather

could be explained by pervasive purifying selection, the selfing

nature, and the complex demographic history of Arabidopsis

(Innan and Stephan 2000). Both positive and purifying selec-

tion can generate excesses of rare epialleles, leading to Dm,

Dmod, and D moving toward negative direction, thus we

cannot distinguish the two types of selection from Dm,

Dmod, and D values. And purifying selection may work more

pervasively in the genome than positive selection (Slotte et al.

2011). Demographic effects have been found contributing to

the nonstandard neutral distribution of Arabidopsis SNPs

(Schmid et al. 2005) and may have a stronger impact on

SMP frequency spectrum due to the higher epimutation

rate. Therefore, to account for the possible pervasive purifying

selection and the demographic effects, it is necessary to use an

empirical distribution of test statistics from a large randomly

selected data set in the genome, which avoids linkage
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FIG. 6.—Comparison of the Dm, Dmod, and D tests based on the empirical SMP data of Arabidopsis.

FIG. 7.—Comparison of the Dm, Dmod, and D tests based on the empirical SMP data of human.
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disequilibrium, as the null distribution of the neutrality test

(Nordborg et al. 2005; Schmid et al. 2005; Wright and Gaut

2005; Toomajian et al. 2006).

However, randomly selected genes include some nonneu-

tral loci where the loci were influenced under positive, purify-

ing or balancing selection. We used simulation to estimate the

effect of test power if empirical distributions include a large

proportion of nonneutral RGs. We simulated 1,000 genes

under each of three types of selection scenarios in “Model

1” and 7,000 genes under the neutral mode (total 10,000

genes). With the statistic distribution of the 10,000 genes as

the null distribution, we repeated the analyses of the test

power for selection. We found that the powers of the three

tests are indeed decreased when compared with our previous

results (supplementary table S7 and fig. S7, Supplementary

Material online). Therefore, we need to be cautious that the

use of empirical distributions may also increase false negative

rate and detect fewer events with selection footprints (purify-

ing or positive selection).

Comparison of Neutrality Tests Based on SNPs and SMPs

We analyzed whether there is an association between the

selection on SMPs detected by Dm and that on SNPs detected

by D. We used the maximum same set of 21,885 Arabidopsis

genes to compute D values with SNPs from the same 50

Arabidopsis accessions as SMP data. We used the maximum

set of 9,172 genes with both mapped SMPs and SNPs in

African-American population, 14,771 genes in Caucasian-

American population, and 14,407 genes in Asian

Americans. We used the empirical distribution of the above

RGs as the null distribution to compute the critical values (with

5% Type I error for one tail).

In Arabidopsis, using Dm test, we identified 1,312 and

1,028 genes falling into the 5% lower and upper tails of the

null distribution of SMPs, respectively. Using D test, we iden-

tified 1,079 and 1,201 genes falling into the 5% lower and

upper tails of the null distribution of SNPs, respectively.

Among them, 220 genes showed selection signatures in

both genetic (SNP) and epigenetic (SMP) levels (table 3). If

selection on DNA mutations and epimutations occurs comple-

tely independently, we would expect to observe 244 genes

with selection signature in both genetic and epigenetic levels

([1,312 + 1,028]/21,885 in SMPs* [1,079 + 1,201]/21,885 in

SNPs *21,885 genes = 244 genes). Thus, the observed

number of genes with both epigenetic and genetic selection

signatures (220 genes) is not different from the random ex-

pectation (244 genes, binomial test, P = 0.13). Further, some

genes fell into 5% tail of null distribution for SMPs and SNPs in

the same direction, whereas other genes fell in the opposite

direction (table 3).

Additionally, when we applied Dmod and D to this empirical

SMP data, compared with Dm test, Dmod and D identified 72

(6%) and 38 (3%) fewer genes falling into the 5% lower tail

of the null distribution, respectively. This empirical analysis is

consistent with our previous simulation results showing that

Dm outperforms Dmod and D in detecting the loci with excesses

of rare epialleles.

In human, using Dm test, we identified 450 and 433 genes

falling into the 5% lower and upper tails of the null distribu-

tion of SMPs in African-American population, 746 and 624 in

Caucasian-American population, and 705 and 605 in Asian-

American population, respectively (table 3). Based on D test,

we detected 585 and 475 genes falling into the 5% lower and

upper tails of the null distribution of SNPs in African-

Americans, 865 and 689 in Caucasian-Americans, and 859

and 718 in Asian-Americans, respectively (table 3). The num-

bers of overlapped genes bearing the outlier (falling into the

5% lower or upper tails of the null distribution) Dm and

Table 3

The Number of Genes Falling in 5% Lower and 5% Upper Tails of the Null Distribution of SNPs and SMPs and the Number

of Genes Overlapped among the Four Categories in Arabidopsis and Three Human Populations

NOTE.—The number order as Arabidopsis, African American, Caucasian American, Asian American.

Table 4

Comparison of the Dm Values of NDGs and PGs with Those of RGs

SMP Types Mean Dm Variance

of Dm

Wilcox

test pa

No. (%)

of Genesb

RG_C_SMP �0.5836 1.8370

NDG_C_SMP �1.3076 2.0000 1.577e-05 10 (25.00)

PG_C_SMP �0.6740 1.6025 0.3732 4 (8.89)

RG_CG_SMP �0.2303 2.7481

NDG_CG_SMP �0.8595 2.9818 0.002072 6 (16.22)

PG_CG_SMP 0.0851 3.0276 0.8956 3 (6.98)

aThe one-tailed P values were generated by comparing the Dm values of
NDGs and PGs with those of RGs, respectively, using Wilcoxon rank sum test.

bThe number of genes with an excess of rare-SMPs is based on empirical P
values� 0.05.
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D values are similar to random expectations and binomial test

reported insignificant P value (P value: African American:

0.1633, Caucasian American: 0.315, Asian American:

0.8667). This result is similar to the above one in Arabidopsis.

Selection Driving the Methylation Variation of Newly
Evolved Genes

Changes of epigenetic modifications have been hypothesized

and shown as a fast and powerful mechanism to preserve

newly originated genes through silencing or differentiating

their expression from their parental sequences (Rodin and

Riggs 2003; Adams et al. 2004; Silveira et al. 2013). To

verify this hypothesis and detect whether such processes

were driven by natural selection, we applied Dm to the

SMPs of two sets of lineage-specific new genes.

The first data set includes the Arabidopsis lineage-specific

new duplicate genes (NDGs) and their parental genes (PGs)

(Wang et al. 2013). Among them, 40 NDGs and 45 PGs have

C-SMP data, and 37 NDGs and 43 PGs have CG-SMP data.

We applied Dm to their C-SMPs and CG-SMPs. After comput-

ing Dm for NDGs and PGs, we compared the distribution of

their Dm with those of the RGs. We found that for C-SMPs and

CG-SMPs, the Dm values of NDGs were significantly smaller

than those of RGs (Wilcoxon rank sum test, one tailed

P<0.005; table 4), whereas no significant difference of Dm

was observed between PGs and RGs (table 4). We also found

a larger proportion of NDGs falling into the lower 5% tail of

null SMP distribution than those of PGs and RGs (table 4),

implying prevalent natural selection on NDGs. Alternatively,

recently evolved genes might encounter a relaxed purifying

selection during their early stage to accumulate an excess of

deleterious epimutations, so a higher proportion of NDGs may

be observed with excesses of rare-SMPs. Among the 12 NDGs

with significant Dm values (in the lower or upper 5% tail of null

distribution), 11 genes have annotated functional roles (sup-

plementary table S8, Supplementary Material online). Overall,

the results show that newly evolved genes contain higher

number of rare methylation variants, suggesting that selection

may act on the epimutations of new genes during their early

formation processes.

Additionally, when we applied Dmod and D to the SMP

data, both Dmod and D tests identified three (43%) fewer

NDGs and two (100%) fewer PGs falling into the 5% lower

tail of the null distribution than Dm, respectively; and D test

recognized three (43%) fewer NDGs and two (100%) fewer

PGs than Dm. This result further demonstrated the better per-

formance of Dm in detecting loci with excesses of rare-SMPs

than Dmod and D.

The second data set includes eight hominoid-specific de

novo genes (MYEOV, MGC45800, C20orf166, TDRG1,

FLJ26850, C19orf48, LOC284837, and C1orf229), which

were recently identified by Xie et al. (2012). The eight genes

were chosen because they still exist in the current Ensembl

human gene annotation and are overlapped with human

CG-SMP data generated by Heyn et al. (2013). Using the

CG-SMP data from three human populations, we identified

two de novo genes, C19orf48 and FLJ26850, with excesses of

low-frequency SMPs in Caucasian-American population but

not the other two populations, which might suggest popula-

tion-specific selection footprints. The Dm value of C19orf48

equals �1.7829 (P = 0.0343), and the Dm value of FLJ26850

equals �1.9863 (P = 0.0142). The P value was the proportion

of RGs with Dm less than Dm of the gene of interest. As the P

value is computed with the empirical distribution of RGs as the

null, which may contain some selective loci, we may underes-

timate the significance level. Notably, both the genes were

expressed in testis (Xie et al. 2012). We collected the annota-

tion of the new genes in Arabidopsis and human with signif-

icant Dm values in the supplementary table S8, Supplementary

Material online.

Finally, among 246 genes involved in population-specific

CpG sites (pop-CpG) identified by Heyn et al. (2013), 11

genes (MRPS18A, CLCN7, INPP5A, MCPH1, CDK11A, HSF1,

SLC22A16, TSSC1, SERTAD3, NPHP4, and RNLS) overlapped

with the genes showing significant negative Dm (the genes

falling in the lower 5% of null distribution among all the

genes) in at least one population. Among 27 genes bearing

pop-CpG sites with outlier characteristics of local selection

identified by Heyn et al. (2013) (using Chimpanzee as the

outgroup), four genes (CDK11A, SLC22A16, NPHP4, and

RNLS) were overlapped with significant negative Dm genes

(the genes falling in the lower 5% of null distribution

among all the genes) in at least one population. The small

number of overlapping genes can be explained by the differ-

ent methodologies and objectives between two analyses.

Specifically, we used the SMP frequency spectrum in the

entire gene body within one population in the test, but

Heyn et al. identified any single cytosine site bearing differen-

tial population methylation pattern by compared the methyl-

ation level among three populations and used chimpanzee as

the outgroup for the local selection analysis. Further, they

considered intergenic, promoter and gene body regions

(Heyn et al. 2013), but we only considered gene body regions.

Discussion

Epimutations have been shown to be the transmittable infor-

mation from one generation to the next that affects the traits

and fitness of offspring, so natural selection could act on pop-

ulation experiencing changes of epigenetic marks. Thus, sim-

ilar to infer the selection on DNA variations at the population

level, intraspecific epimutation polymorphism spectrum could

provide clues to detect the signature of natural selection on

epialleles. Based on Tajima’s approaches (Tajima 1996;

Misawa and Tajima 1997), we derived two estimators (c��m

and c�sm
) to compute the methylation mutation parameter

�m. Simulation results showed that both estimators could
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precisely estimate �m when �m is small. With the difference

between c��m
and c�sm

, we developed the Dm test to detect

natural selection on DNA methylation following the frame-

work of Tajima’s D test (Tajima 1989). The basic rationale of

the Dm test is that natural selection can influence the fre-

quency spectrum of DNA methylation polymorphism, which

could be detected by the difference of c��m
and c�sm

. This ra-

tionale is supported by our simulation results.

However, theoretical studies and simulations also showed

that directional selection in DNA methylation could cause an

excess of intermediate-frequency epialleles (positive Dm) or

rare epialleles (negative Dm) dependent on epimutation rate.

Under a high epimutation rate, the frequency of an epiallele

matching the dominant environment could be higher at equi-

librium regardless of natural selection (Geoghegan and

Spencer 2012). This contrasts with effects of selection on

DNA variations where balancing selection generates an

excess of intermediate-frequency alleles (positive D) and direc-

tional selection generates an excess of rare alleles (negative D).

Therefore, the interpretation of Dm on SMPs could be different

from that of D on SNPs. Namely, either extreme negative or

positive Dm value could suggest directional selection on epial-

leles. Nevertheless, despite different interpretations of the im-

plications of Dm on SMPs, simulations based on the population

epigenetic selection models showed that the Dm test is capa-

ble of detecting selective signals of epimutations, and the

power of Dm in detecting selection on methylation is compa-

rable to the original or modified Tajima’s D test when they

were directly applied to SMP data. All three tests can detect

the footprints of selection that result in recently arising high-

frequency methylation polymorphisms and long-lasting inter-

mediate-frequency methylation polymorphisms. However, Dm

performs substantially better than the other two tests in rec-

ognizing selection causing the long-lasting rare epialleles,

which was further demonstrated by empirical SMP data

analyses.

By applying the Dm test to empirical SMPs and the D test to

empirical SNPs in Arabidopsis, we found that the number of

genes with selection signatures in both SNPs and SMPs is close

to the random expectation. Therefore, this result does support

that genetic and epigenetic variations are rarely linked, which

is consistent with the previous finding that SMPs are largely

independent of SNPs (Schmitz, Schultz, et al. 2013). However,

it is possible that tests of D on SNPs and Dm on SMPs are

unable to ultimately detect selection footprints on both epi-

genetic and genetic levels at the same evolutionary time,

which was also suggested by the simulations based on the

population epigenetic selection model for a biallele and

biepiallele locus (Model 2). Meanwhile, frequency spectrum

tests based on SMPs and SNPs identified 100–200 genes with

potential selection signatures in both genetic and epigenetic

levels (table 3), suggesting that a small set of loci may have

epigenetic variations that are closely associated with genetic

variations. Overall, our analysis demonstrated that genetic and

epigenetic variations could be subject to selection indepen-

dently, though a small set of loci may behave as obligatory

epigenetic variations that are completely associated with ge-

netic variations (Richards 2006, 2008).

As showed in simulation, directional selection in DNA

methylation can cause an excess of intermediate-frequency

epialleles or rare epialleles dependent on epimutation rate.

This contrasts with effects of selection on DNA variations

where balancing selection generates an excess of intermedi-

ate-frequency alleles and directional selection generates an

excess of rare alleles. Therefore, the genes with excesses of

intermediate-frequency SNPs and SMPs may undergo differ-

ent types of selective pressures on genetic (e.g., balancing

selection) and epigenetic (e.g., directional selection) levels. In

contrast, the genes with an excess of intermediate-frequency

SMPs but an excess of rare SNPs may experience the same

type of selective pressure (e.g., directional selection) on ge-

netic and epigenetic levels.

We envision that the methodology of Dm can be broadly

applicable as more and more genome-wide SMP data from

different species become available, enhancing our under-

standing of evolutionary processes in the light of epigenetics.

We acknowledge that Dm test can be improved in several

aspects. First, better approaches are necessary to estimate

the � parameter of Dm. Second, to model the pattern of

epimutations, we considered a simple symmetric CFN two-

state model (Neyman 1971; Farris 1973; Cavender 1978) in

Dm, assuming equal frequencies of methylated and un-mCs,

equal rate of methylation loss and gain, and an epimutation

rate that follows a gamma distribution among sites. A sophis-

ticated nonsymmetric epimutation model based on the em-

pirical frequency and epimutation rate is also needed to

further improve the neutrality test for epimutations.

Supplementary Material

Supplementary materials S1 and S2, figures S1–S7, and tables

S1–S8 are available at Genome Biology and Evolution online

(http://www.gbe.oxfordjournals.org/).
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